skip to main content

Title: Rare-earth transition-metal chalcogenides Ln{sub 3}MGaS{sub 7} (Ln=Nd, Sm, Dy, Er; M=Co, Ni) and Ln{sub 3}MGaSe{sub 7} (Ln=Nd, Sm, Gd, Dy, M=Co; Ln=Nd, Gd, Dy, M=Ni)

Fifteen new rare-earth transition-metal chalcogenides, Ln{sub 3}MGaS{sub 7} (Ln=Nd, Sm, Dy, Er; M=Co, Ni) and Ln{sub 3}MGaSe{sub 7} (Ln=Nd, Sm, Gd, Dy, M=Co; Ln=Nd, Gd, Dy, M=Ni), have been synthesized by solid state reactions. They are isostructural, adopt Ce{sub 3}Al{sub 1.67}S{sub 7}—related structure type, and crystallize in the non-centrosymmetric hexagonal space group P6{sub 3}. They adopt a three-dimensional framework composed of LnQ{sub 7} monocapped trigonal prisms with the interesting [MQ{sub 3}]{sup 4−} chains and isolated GaQ{sub 4} tetrahedra lying in two sets of channels in the framework. The magnetic susceptibility measurements on Ln{sub 3}CoGaQ{sub 7} (Ln=Dy, Er, Q=S; Ln=Dy, Q=Se) indicate that they are paramagnetic and obey the Curie–Weiss law over the entire experimental temperature, while the magnetic susceptibility of Sm{sub 3}CoGaSe{sub 7} deviates from the Curie–Weiss law as a result of the crystal field splitting. - Graphical abstract: Ln{sub 3}MGaS{sub 7} (Ln=Nd, Sm, Dy, Er; M=Co, Ni) and Ln{sub 3}MGaSe{sub 7} (Ln=Nd, Sm, Gd, Dy, M=Co; Ln=Nd, Gd, Dy, M=Ni) adopt a three-dimensional framework composed of LnQ{sub 7} monocapped trigonal prisms with interesting [MQ{sub 3}]{sup 4−} chains and isolated GaQ{sub 4} tetrahedra lying in two sets of channels in the framework. - Highlights: • New compounds, Ln{sub 3}MGaQ{sub 7}more » (Ln=rare-earth; M=Co, Ni; Q=S, Se), were synthesized. • They are isostructural and crystallize in the noncentrosymmetric space group P6{sub 3}. • They adopt a three-dimensional framework built by LnQ{sub 7} monocapped trigonal prisms. • Ln{sub 3}CoGaQ{sub 7} (Ln=Dy, Er; Q=S, Se) are paramagnetic and obey the Curie–Weiss law. • The magnetic susceptibility of Sm{sub 3}CoGaSe{sub 7} deviates from the Curie–Weiss law.« less
Authors:
 [1] ;  [2] ; ;  [1] ;  [3] ;  [3]
  1. Institute of Chemical Materials, China Academy of Engineering Physics, P.O. Box 919-306 Mianyang 621900 (China)
  2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
  3. Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Publication Date:
OSTI Identifier:
22334204
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 213; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CHALCOGENIDES; CRYSTAL FIELD; HEXAGONAL LATTICES; MAGNETIC SUSCEPTIBILITY; PARAMAGNETISM; RARE EARTHS; SOLIDS; SPACE GROUPS; SYNTHESIS; TRANSITION ELEMENTS