skip to main content

Title: Syntheses and structures of three heterometallic coordination polymers derived from 4-pyridin-3-yl-benzoic acid

Three lanthanide–transition-metal coordination polymers, namely, [Er{sub 2}L{sub 6}(H{sub 2}O)][Cu{sub 2}I{sub 2}] (1), [ErL{sub 3}][CuI] (2), and [Dy{sub 2}L{sub 6}(BPDC){sub 0.5}(H{sub 2}O){sub 4}][Cu{sub 3}I{sub 2}] (3) (HL=4-pyridin-3-yl-benzoic acid, H{sub 2}BPDC=4,4′-biphenyldicarboxylic acid) have been made by reacting Ln{sub 2}O{sub 3} and CuI with HL at different temperatures under hydrothermal conditions. All the complexes are characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction, respectively. 1–3 all construct from dimeric (Ln{sub 2}) and (Cu{sub 2}) units and exhibit two types of the structural features: 1 is a two-dimensional layer, 2–3 are three-dimensional frameworks. Interestingly, the in situ formation of the BPDC ligand is found in the structure of 3. The distinct architectures of these complexes indicated that the reaction temperature plays an important role in the formation of higher dimensional coordination polymers. - Graphical abstract: By hydrothermal reaction of lanthanide oxide, copper halide, and 4-pyridin-3-yl-benzoic ligand at different temperatures, a series of 1-D to 3-D 3d–4f coordination polymers, namely [ErL{sub 3}(H{sub 2}O){sub 2}][CuI], [Er{sub 2}L{sub 6}(H{sub 2}O)][Cu{sub 2}I{sub 2}], [ErL{sub 3}][CuI], and [Dy{sub 2}L{sub 6}(BPDC){sub 0.5}(H{sub 2}O){sub 4}][Cu{sub 3}I{sub 2}], have been made, respectively. - Highlights: • Three novel heterometallic coordination polymers derived from 4-pyridin-3-yl-benzoic acid havemore » been hydrothermally synthesized. • Mixed dinuclear motifs of (Ln{sub 2}) and (Cu{sub 2}) serve as secondary building units to generate 2-D layer and 3-D frameworks. • It is proved that higher temperature is apt to permit construction of high dimensional architectures.« less
Authors:
;
Publication Date:
OSTI Identifier:
22334190
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 212; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BENZOIC ACID; COPPER; COPPER IODIDES; CRYSTAL STRUCTURE; HYDROTHERMAL SYNTHESIS; INFRARED SPECTRA; LIGANDS; MONOCRYSTALS; OXIDES; POLYMERS; RARE EARTHS; THERMAL GRAVIMETRIC ANALYSIS; X-RAY DIFFRACTION