skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-220: Evaluation of Atlas-Based Auto-Segmentation (ABAS) in Head-And-Neck Adaptive Radiotherapy

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4888273· OSTI ID:22334097
;  [1]
  1. William Beaumont Hospital, Royal Oak, MI (United States)

Purpose: Evaluate the accuracy of atlas-based auto segmentation of organs at risk (OARs) on both helical CT (HCT) and cone beam CT (CBCT) images in head and neck (HN) cancer adaptive radiotherapy (ART). Methods: Six HN patients treated in the ART process were included in this study. For each patient, three images were selected: pretreatment planning CT (PreTx-HCT), in treatment CT for replanning (InTx-HCT) and a CBCT acquired in the same day of the InTx-HCT. Three clinical procedures of auto segmentation and deformable registration performed in the ART process were evaluated: a) auto segmentation on PreTx-HCT using multi-subject atlases, b) intra-patient propagation of OARs from PreTx-HCT to InTx-HCT using deformable HCT-to-HCT image registration, and c) intra-patient propagation of OARs from PreTx-HCT to CBCT using deformable CBCT-to-HCT image registration. Seven OARs (brainstem, cord, L/R parotid, L/R submandibular gland and mandible) were manually contoured on PreTx-HCT and InTx-HCT for comparison. In addition, manual contours on InTx-CT were copied on the same day CBCT, and a local region rigid body registration was performed accordingly for each individual OAR. For procedures a) and b), auto contours were compared to manual contours, and for c) auto contours were compared to those rigidly transferred contours on CBCT. Dice similarity coefficients (DSC) and mean surface distances of agreement (MSDA) were calculated for evaluation. Results: For procedure a), the mean DSC/MSDA of most OARs are >80%/±2mm. For intra-patient HCT-to-HCT propagation, the Resultimproved to >85%/±1.5mm. Compared to HCT-to-HCT, the mean DSC for HCT-to-CBCT propagation drops ∼2–3% and MSDA increases ∼0.2mm. This Resultindicates that the inferior imaging quality of CBCT seems only degrade auto propagation performance slightly. Conclusion: Auto segmentation and deformable propagation can generate OAR structures on HCT and CBCT images with clinically acceptable accuracy. Therefore, they can be reliably implemented in the clinical HN ART process.

OSTI ID:
22334097
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English