skip to main content

Title: SU-D-BRF-02: In Situ Verification of Radiation Therapy Dose Distributions From High-Energy X-Rays Using PET Imaging

Purpose: To study the possibility of in situ verification of radiation therapy dose distributions using PET imaging based on the activity distribution of 11C and 15O produced via photonuclear reactions in patient irradiated by 45MV x-rays. Methods: The method is based on the photonuclear reactions in the most elemental composition {sup 12}C and {sup 16}O in body tissues irradiated by bremsstrahlung photons with energies up to 45 MeV, resulting primarily in {sup 11}C and {sup 15}O, which are positron-emitting nuclei. The induced positron activity distributions were obtained with a PET scanner in the same room of a LA45 accelerator (Top Grade Medical, Beijing, China). The experiments were performed with a brain phantom using realistic treatment plans. The phantom was scanned at 20min and 2-5min after irradiation for {sup 11}C and {sup 15}, respectively. The interval between the two scans was 20 minutes. The activity distributions of {sup 11}C and {sup 15}O within the irradiated volume can be separated from each other because the half-life is 20min and 2min for {sup 11}C and {sup 15}O, respectively. Three x-ray energies were used including 10MV, 25MV and 45MV. The radiation dose ranged from 1.0Gy to 10.0Gy per treatment. Results: It was confirmed thatmore » no activity was detected at 10 MV beam energy, which was far below the energy threshold for photonuclear reactions. At 25 MV x-ray activity distribution images were observed on PET, which needed much higher radiation dose in order to obtain good quality. For 45 MV photon beams, good quality activation images were obtained with 2-3Gy radiation dose, which is the typical daily dose for radiation therapy. Conclusion: The activity distribution of {sup 15}O and {sup 11}C could be used to derive the dose distribution of 45MV x-rays at the regular daily dose level. This method can potentially be used to verify in situ dose distributions of patients treated on the LA45 accelerator.« less
Authors:
 [1] ; ; ; ; ;  [2] ;  [3]
  1. Wu Xi Yi Ren Tumor Hosiptal, Wuxi, Jiangsu (China)
  2. ChangAn Hospital, Xian, Shaanxi (China)
  3. Fox Chase Cancer Center, Philadelphia, PA (United States)
Publication Date:
OSTI Identifier:
22333992
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; 60 APPLIED LIFE SCIENCES; BRAIN; BREMSSTRAHLUNG; CARBON 11; CARBON 12; IRRADIATION; OXYGEN 15; OXYGEN 16; PHANTOMS; PHOTON BEAMS; PHOTONS; PHOTONUCLEAR REACTIONS; POSITRONS; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY