skip to main content

SciTech ConnectSciTech Connect

Title: SU-E-J-36: Combining CBCT Dose Into IMRT Treatment Planning

Purpose: Cone beam CT (CBCT) is increasingly used in patient setup for IMRT. Daily CBCT may provide effective localization, however, it introduces concern over excessive imaging dose. Previous studies investigated the calculation of excess CBCT dose, however, no study has yet treated this dose as a source of therapeutic radiation, optimized in consideration of PTV and OARs constrains. Here we present a novel combined MV+kV inverse optimization engine to weave the CBCT and MV dose together such that CBCT dose is used for both imaging and therapeutic purposes. This may mitigate some of the excess imaging dose effects of daily CBCT and allow complete evaluation of the CBCT dose prior to treatment. Methods: The EGSnrc Monte Carlo system was used to model a Varian Trilogy CBCT system and 6 MV treatment beam. Using the model, the dose to patient from treatment beam and imaging beam was calculated for ten patients. The standard IMRT objective function was modified to include CBCT dose. Treatment plan optimization using the MOSEK optimization tool was performed retrospectively with and without assuming kV radiation dose from CBCT, assuming one CBCT per fraction. Results: Across ten patients, the CBCT delivered peaks of between .4% and 3.0% ofmore » the prescription dose to the PTV, with average CBCT dose to the PTV between .3% and .8%. By including CBCT dose to skin as a constraint during optimization, peak skin dose is reduced by between 1.9% and 7.4%, and average skin dose is reduced by .2% to 3.3%. Conclusions: Pre-treatment CBCT may deliver a substantial amount of radiation dose to the target volume. By considering CBCT dose to skin at the point of treatment planning, it is possible to reduce patient skin dose from current clinical levels, and to provide patient treatment with the improved accuracy that daily CBCT provides.« less
Authors:
;  [1]
  1. The University of Chicago, Chicago, IL (United States)
Publication Date:
OSTI Identifier:
22325298
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACCURACY; BEAMS; COMPUTERIZED TOMOGRAPHY; MONTE CARLO METHOD; OPTIMIZATION; PATIENTS; PLANNING; RADIATION DOSES; RADIOTHERAPY; SKIN