skip to main content

Title: SU-E-I-45: Reconstruction of CT Images From Sparsely-Sampled Data Using the Logarithmic Barrier Method

Purpose: To develop and investigate whether the logarithmic barrier (LB) method can result in high-quality reconstructed CT images using sparsely-sampled noisy projection data Methods: The objective function is typically formulated as the sum of the total variation (TV) and a data fidelity (DF) term with a parameter λ that governs the relative weight between them. Finding the optimized value of λ is a critical step for this approach to give satisfactory results. The proposed LB method avoid using λ by constructing the objective function as the sum of the TV and a log function whose augment is the DF term. Newton's method was used to solve the optimization problem. The algorithm was coded in MatLab2013b. Both Shepp-Logan phantom and a patient lung CT image were used for demonstration of the algorithm. Measured data were simulated by calculating the projection data using radon transform. A Poisson noise model was used to account for the simulated detector noise. The iteration stopped when the difference of the current TV and the previous one was less than 1%. Results: Shepp-Logan phantom reconstruction study shows that filtered back-projection (FBP) gives high streak artifacts for 30 and 40 projections. Although visually the streak artifacts are lessmore » pronounced for 64 and 90 projections in FBP, the 1D pixel profiles indicate that FBP gives noisier reconstructed pixel values than LB does. A lung image reconstruction is presented. It shows that use of 64 projections gives satisfactory reconstructed image quality with regard to noise suppression and sharp edge preservation. Conclusion: This study demonstrates that the logarithmic barrier method can be used to reconstruct CT images from sparsely-amped data. The number of projections around 64 gives a balance between the over-smoothing of the sharp demarcation and noise suppression. Future study may extend to CBCT reconstruction and improvement on computation speed.« less
Authors:
 [1]
  1. Department of Radiation Oncology, Dalhousie University, Halifax, NS (Canada)
Publication Date:
OSTI Identifier:
22325273
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 60 APPLIED LIFE SCIENCES; ALGORITHMS; AMP; CAT SCANNING; DIFFUSION BARRIERS; IMAGE PROCESSING; INHIBITION; LUNGS; NEWTON METHOD; NOISE; OPTIMIZATION; PATIENTS; PHANTOMS; RADON; SIMULATION; SOCIO-ECONOMIC FACTORS; VENTILATION BARRIERS