skip to main content

SciTech ConnectSciTech Connect

Title: SU-E-J-67: Evaluation of Breathing Patterns for Respiratory-Gated Radiation Therapy Using Respiration Regularity Index

Purpose: Despite the importance of accurately estimating the respiration regularity of a patient in motion compensation treatment, an effective and simply applicable method has rarely been reported. The authors propose a simple respiration regularity index based on parameters derived from a correspondingly simplified respiration model. Methods: In order to simplify a patient's breathing pattern while preserving the data's intrinsic properties, we defined a respiration model as a power of cosine form with a baseline drift. According to this respiration formula, breathing-pattern fluctuation could be explained using four factors: sample standard deviation of respiration period, sample standard deviation of amplitude and the results of simple regression of the baseline drift (slope and standard deviation of residuals of a respiration signal. Overall irregularity (δ) was defined as a Euclidean norm of newly derived variable using principal component analysis (PCA) for the four fluctuation parameters. Finally, the proposed respiration regularity index was defined as ρ=ln(1+(1/ δ))/2, a higher ρ indicating a more regular breathing pattern. Subsequently, we applied it to simulated and clinical respiration signals from real-time position management (RPM; Varian Medical Systems, Palo Alto, CA) and investigated respiration regularity. Moreover, correlations between the regularity of the first session and the remaining fractionsmore » were investigated using Pearson's correlation coefficient. Results: The respiration regularity was determined based on ρ; patients with ρ<0.3 showed worse regularity than the others, whereas ρ>0.7 was suitable for respiratory-gated radiation therapy (RGRT). Fluctuations in breathing cycle and amplitude were especially determinative of ρ. If the respiration regularity of a patient's first session was known, it could be estimated through subsequent sessions. Conclusions: Respiration regularity could be objectively determined using a respiration regularity index, ρ. Such single-index testing of respiration regularity can facilitate determination of RGRT availability in clinical settings, especially for free-breathing cases. This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean Ministry of Science, ICT and Future Planning (No. 2013043498)« less
Authors:
; ; ; ; ; ; ; ; ;  [1]
  1. Hallym University College of Medicine, Anyang (Korea, Republic of)
Publication Date:
OSTI Identifier:
22325226
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; AMPLITUDES; CORRELATIONS; EUCLIDEAN SPACE; FINANCING; MANAGEMENT; PATIENTS; PLANNING; POLAR-CAP ABSORPTION; RADIOTHERAPY; RESPIRATION; SIMULATION; TESTING