skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

Abstract

Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalities include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes usemore » of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.« less

Authors:
 [1]
  1. Mayo Clinic, Rochester, MN (United States)
Publication Date:
OSTI Identifier:
22325125
Resource Type:
Journal Article
Journal Name:
Medical Physics
Additional Journal Information:
Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0094-2405
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 60 APPLIED LIFE SCIENCES; CARDIOVASCULAR DISEASES; COMPUTERIZED TOMOGRAPHY; CORONARIES; DIAGNOSIS; ENDOTHELIUM; ESOPHAGUS; FLUOROSCOPY; HEART; IMAGES; NMR IMAGING; PATIENTS; X RADIATION

Citation Formats

Fetterly, K. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications. United States: N. p., 2014. Web. doi:10.1118/1.4887948.
Fetterly, K. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications. United States. https://doi.org/10.1118/1.4887948
Fetterly, K. 2014. "SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications". United States. https://doi.org/10.1118/1.4887948.
@article{osti_22325125,
title = {SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications},
author = {Fetterly, K},
abstractNote = {Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalities include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.},
doi = {10.1118/1.4887948},
url = {https://www.osti.gov/biblio/22325125}, journal = {Medical Physics},
issn = {0094-2405},
number = 6,
volume = 41,
place = {United States},
year = {Sun Jun 01 00:00:00 EDT 2014},
month = {Sun Jun 01 00:00:00 EDT 2014}
}