skip to main content

Title: Effect of blast furnace slag on self-healing of microcracks in cementitious materials

The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. •more » Effect of slag on self-healing was discussed based on experiments and simulation.« less
Authors:
 [1] ;  [1] ;  [2] ;  [3] ;  [4]
  1. Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands)
  2. (Belgium)
  3. Université Lille Nord de France (France)
  4. (France)
Publication Date:
OSTI Identifier:
22323145
Resource Type:
Journal Article
Resource Relation:
Journal Name: Cement and Concrete Research; Journal Volume: 60; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BLAST FURNACES; CALCITE; CALCIUM HYDROXIDES; CARBONATES; COMPARATIVE EVALUATIONS; CRACKS; GIBBSITE; HEALING; KINETICS; PORTLAND CEMENT; RECRYSTALLIZATION; SIMULATION; SOLUTIONS; TRANSPORT THEORY