skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonisostructural complex oxide heteroepitaxy

Journal Article · · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
DOI:https://doi.org/10.1116/1.4879695· OSTI ID:22318069
 [1]
  1. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

The authors present an overview of the fundamentals and representative examples of the growth of epitaxial complex oxide thin films on structurally dissimilar substrates. The authors will delineate how the details of particular crystal structures and symmetry of different oxide surfaces can be employed for a rational approach to the synthesis of nonisostructural epitaxial heterostructures. The concept of oxygen eutaxy can be widely applied. Materials combinations will be split into three categories, and in all cases the films and substrates occur in different crystal structures: (1) common translational and rotational symmetry between the film and substrate planes; (2) translational symmetry mismatch between the substrates and films that is distinct from a simple mismatch in lattice parameters; and (3) rotational symmetry mismatch. In case (1), in principle single-crystalline thin films can be attained despite the films and substrates possessing different crystal structures. In case (2), antiphase boundaries will be prevalent in the thin films. In case (3), thin-film rotational variants that are joined by tilt boundaries will be present. Diffraction techniques to determine crystallographic alignment and epitaxial variants are discussed, and transmission electron microscopy studies to investigate extended defects in the thin films will also be reviewed. The authors end with open problems in this field regarding the structure of oxide interfaces that can be topics for future research.

OSTI ID:
22318069
Journal Information:
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films, Vol. 32, Issue 4; Other Information: (c) 2014 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0734-2101
Country of Publication:
United States
Language:
English