skip to main content

Title: Mass densification and defect restoration in chemical vapor deposition silicon dioxide film using Ar plasma excited by microwave

Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) have been treated with Ar plasma excited by microwave. The changes of the mass densities, carrier trap densities, and thicknesses of the CVD-SiO{sub 2} films with the Ar plasma treatments were investigated. The mass density depth profiles were estimated with X-Ray Reflectivity (XRR) analysis using synchrotron radiation. The densities of carrier trap centers due to defects of Si-O bond network were estimated with X-ray Photoelectron Spectroscopy (XPS) time-dependent measurement. The changes of the thicknesses due to the oxidation of Si substrates were estimated with the XRR and XPS. The mass densities of the CVD-SiO{sub 2} films are increased by the Ar plasma treatments. The carrier trap densities of the films are decreased by the treatments. The thicknesses of the films are not changed by the treatments. It has been clarified that the mass densification and defect restoration in the CVD-SiO{sub 2} films are caused by the Ar plasma treatments without the oxidation of the Si substrates.
Authors:
; ;  [1] ; ; ;  [2]
  1. Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661 (Japan)
  2. New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)
Publication Date:
OSTI Identifier:
22318060
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 32; Journal Issue: 5; Other Information: (c) 2014 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ARGON; CHEMICAL VAPOR DEPOSITION; FILMS; MICROWAVE RADIATION; PLASMA; SILICA; SILICON OXIDES; SYNCHROTRON RADIATION; X-RAY PHOTOELECTRON SPECTROSCOPY