skip to main content

Title: Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure

Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900 °C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900 °C to identify the formation of tungsten carbide film by reaction of tungsten with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650 °C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900 °C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a resultmore » of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.« less
Authors:
 [1]
  1. Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)
Publication Date:
OSTI Identifier:
22318034
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 32; Journal Issue: 5; Other Information: (c) 2014 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ARGON; COPPER; DEPOSITION; GRAPHENE; MAGNETRONS; NANOSTRUCTURES; OXYGEN; RAMAN SPECTROSCOPY; SCANNING ELECTRON MICROSCOPY; SILICON; THERMAL CONDUCTIVITY; THIN FILMS; TUNGSTEN; TUNGSTEN CARBIDES; X-RAY DIFFRACTION