skip to main content

SciTech ConnectSciTech Connect

Title: Highly tunable formation of nitrogen-vacancy centers via ion implantation

We demonstrate highly tunable formation of nitrogen-vacancy (NV) centers using 20 keV {sup 15}N{sup +} ion implantation through arrays of high-resolution apertures fabricated with electron beam lithography. By varying the aperture diameters from 80 to 240 nm, as well as the average ion fluences from 5×10{sup 10} to 2 × 10{sup 11} ions/cm{sup 2}, we can control the number of ions per aperture. We analyze the photoluminescence on multiple sites with different implantation parameters and obtain ion-to-NV conversion yields of 6%–7%, consistent across all ion fluences. The implanted NV centers have spin dephasing times T{sub 2}{sup *} ∼ 3 μs, comparable to naturally occurring NV centers in high purity diamond with natural abundance {sup 13}C. With this technique, we can deterministically control the population distribution of NV centers in each aperture, allowing for the study of single or coupled NV centers and their integration into photonic structures.
Authors:
; ; ;  [1]
  1. Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)
Publication Date:
OSTI Identifier:
22318011
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CARBON 13; DIAMONDS; ELECTRON BEAMS; ION IMPLANTATION; NITROGEN; NITROGEN 15; PHOTOLUMINESCENCE; SPIN; VACANCIES