skip to main content

SciTech ConnectSciTech Connect

Title: Annealing effect for SnS thin films prepared by high-vacuum evaporation

Thin films of SnS are deposited onto molybdenum-coated soda lime glass substrates using the high-vacuum evaporation technique at a substrate temperature of 300 °C. The as-deposited SnS layers are then annealed in three different media: (1) H{sub 2}S, (2) argon, and (3) vacuum, for different periods and temperatures to study the changes in the microstructural properties of the layers and to prepare single-phase SnS photoabsorber films. It is found that annealing the layers in H{sub 2}S at 400 °C changes the stoichiometry of the as-deposited SnS films and leads to the formation of a dominant SnS{sub 2} phase. Annealing in an argon atmosphere for 1 h, however, causes no deviations in the composition of the SnS films, though the surface morphology of the annealed SnS layers changes significantly as a result of a 2 h annealing process. The crystalline structure, surface morphology, and photosensitivity of the as-deposited SnS films improves significantly as the result of annealing in vacuum, and the vacuum-annealed films are found to exhibit promising properties for fabricating complete solar cells based on these single-phase SnS photoabsorber layers.
Authors:
; ; ; ; ; ; ; ; ;  [1]
  1. Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia)
Publication Date:
OSTI Identifier:
22317934
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 32; Journal Issue: 6; Other Information: (c) 2014 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ARGON; COATINGS; HYDROGEN SULFIDES; LAYERS; MICROSTRUCTURE; MOLYBDENUM; PHOTOSENSITIVITY; SODIUM CARBONATES; SOLAR CELLS; THIN FILMS; TIN SULFIDES