skip to main content

Title: A bound for the Schur index of irreducible representations of finite groups

We construct an optimal bound for the Schur index of irreducible complex representations of finite groups over the field of rational numbers, when only the prime divisors of the order of the group are known. We study relationships with compatible and universally compatible extensions of number fields. We give a simpler proof of the well-known Berman-Yamada bound for the Schur index over the field Q{sub p}. Bibliography: 7 titles.
Authors:
 [1]
  1. M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
Publication Date:
OSTI Identifier:
22317917
Resource Type:
Journal Article
Resource Relation:
Journal Name: Sbornik. Mathematics; Journal Volume: 204; Journal Issue: 8; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; BIBLIOGRAPHIES; GROUP THEORY; IRREDUCIBLE REPRESENTATIONS