skip to main content

Title: Scattering and bound states of fermions in a mixed vector–scalar smooth step potential

The scattering of a fermion in the background of a smooth step potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling. Charge-conjugation and chiral-conjugation transformations are discussed and it is shown that a finite set of intrinsically relativistic bound-state solutions appears as poles of the transmission amplitude. It is also shown that those bound solutions disappear asymptotically as one approaches the conditions for the realization of the so-called spin and pseudospin symmetries in a four-dimensional space–time. - Highlights: • Scattering and bound states of fermions in a kink-like potential. • No pair production despite the high localization. • No bounded solution under exact spin and pseudospin symmetries.
Authors:
;
Publication Date:
OSTI Identifier:
22314840
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics (New York); Journal Volume: 346; Journal Issue: Complete; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOUND STATE; CHIRALITY; COUPLING; EFFECTIVE MASS; FERMIONS; FOUR-DIMENSIONAL CALCULATIONS; MATHEMATICAL SOLUTIONS; PAIR PRODUCTION; POTENTIALS; RELATIVISTIC RANGE; SCALARS; SCATTERING; SPACE-TIME; SPIN; SYMMETRY; TRANSFORMATIONS; VECTORS