Title: Born’s rule as signature of a superclassical current algebra

We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with the application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie–Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violationmore » of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool. -- Highlights: •Calculating the interference patterns and particle trajectories of a double-, three- and N-slit system. •Deriving a new formulation of the guiding equation equivalent to the de Broglie–Bohm one. •Proving the absence of third order interferences and thus explaining Born’s rule. •Explaining the violation of Sorkin’s order sum rules. •Classical simulation of Talbot patterns and exact reproduction of Talbot distance for N slits.« less

Austrian Institute for Nonlinear Studies, Akademiehof, Friedrichstr. 10, 1010 Vienna (Austria)

(Austria)

Publication Date:

OSTI Identifier:

22314796

Resource Type:

Journal Article

Resource Relation:

Journal Name: Annals of Physics (New York); Journal Volume: 343; Journal Issue: Complete; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)

Country of Publication:

United States

Language:

English

Subject:

71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOHM CRITERION; CAUSALITY; CURRENT ALGEBRA; CURRENT DENSITY; INTERFERENCE; OSCILLATIONS; QUANTUM MECHANICS; STEADY-STATE CONDITIONS; SUM RULES; THERMODYNAMICS; TRAJECTORIES