Title: Theory of extreme correlations using canonical Fermions and path integrals

The t–J model is studied using a novel and rigorous mapping of the Gutzwiller projected electrons, in terms of canonical electrons. The mapping has considerable similarity to the Dyson–Maleev transformation relating spin operators to canonical Bosons. This representation gives rise to a non Hermitian quantum theory, characterized by minimal redundancies. A path integral representation of the canonical theory is given. Using it, the salient results of the extremely correlated Fermi liquid (ECFL) theory, including the previously found Schwinger equations of motion, are easily rederived. Further, a transparent physical interpretation of the previously introduced auxiliary Greens function and the ‘caparison factor’, is obtained. The low energy electron spectral function in this theory, with a strong intrinsic asymmetry, is summarized in terms of a few expansion coefficients. These include an important emergent energy scale Δ{sub 0} that shrinks to zero on approaching the insulating state, thereby making it difficult to access the underlying very low energy Fermi liquid behavior. The scaled low frequency ECFL spectral function, related simply to the Fano line shape, has a peculiar energy dependence unlike that of a Lorentzian. The resulting energy dispersion obtained by maximization is a hybrid of a massive and a massless Dirac spectrum E{submore » Q}{sup ∗}∼γQ−√(Γ{sub 0}{sup 2}+Q{sup 2}), where the vanishing of Q, a momentum type variable, locates the kink minimum. Therefore the quasiparticle velocity interpolates between (γ∓1) over a width Γ{sub 0} on the two sides of Q=0, implying a kink there that strongly resembles a prominent low energy feature seen in angle resolved photoemission spectra (ARPES) of cuprate materials. We also propose novel ways of analyzing the ARPES data to isolate the predicted asymmetry between particle and hole excitations. -- Highlights: •Spectral function of the Extremely Correlated Fermi Liquid theory at low energy. •Electronic origin of low energy kinks in energy dispersion. •Non Hermitian representation of Gutzwiller projected electrons. •Analogy with Dyson–Maleev representation of spins. •Path integral formulation of extremely correlated electrons.« less

Journal Name: Annals of Physics (New York); Journal Volume: 343; Journal Issue: Complete; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)

Country of Publication:

United States

Language:

English

Subject:

75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ASYMMETRY; BOSONS; CUPRATES; ELECTRON CORRELATION; ELECTRONS; ENERGY DEPENDENCE; EQUATIONS OF MOTION; EXCITATION; FERMI GAS; GREEN FUNCTION; HOLES; PATH INTEGRALS; PHOTOEMISSION; SPECTRAL FUNCTIONS; SPIN