skip to main content

Title: Creation of vector bosons by an electric field in curved spacetime

We investigate the creation rate of massive spin-1 bosons in the de Sitter universe by a time-dependent electric field via the Duffin–Kemmer–Petiau (DKP) equation. Complete solutions are given by the Whittaker functions and particle creation rate is computed by using the Bogoliubov transformation technique. We analyze the influence of the electric field on the particle creation rate for the strong and vanishing electric fields. We show that the electric field amplifies the creation rate of charged, massive spin-1 particles. This effect is analyzed by considering similar calculations performed for scalar and spin-1/2 particles. -- Highlights: •Duffin–Kemmer–Petiau equation is solved exactly in the presence of an electrical field. •Solutions were made in (1+1)-dimensional curved spacetime. •Particle creation rate for the de Sitter model is calculated. •Pure gravitational or pure electrical field effect on the creation rate is analyzed.
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22314785
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics (New York); Journal Volume: 343; Journal Issue: Complete; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; BOGOLYUBOV TRANSFORMATION; BOSONS; DE SITTER GROUP; DE SITTER SPACE; ELECTRIC FIELDS; FERMIONS; FIELD EQUATIONS; MATHEMATICAL SOLUTIONS; PARTICLE PRODUCTION; SCALARS; SPACE-TIME; TIME DEPENDENCE; UNIVERSE