skip to main content

Title: Chemical solution deposition derived (001)-oriented epitaxial BiFeO{sub 3} thin films with robust ferroelectric properties using stoichiometric precursors (invited)

Phase pure bismuth ferrite (BiFeO{sub 3}) thin films with (001)-oriented epitaxial structure are realized on lanthanum strontium manganite (La{sub 0.67}Sr{sub 0.33}MnO{sub 3}) buffered (001)-SrTiO{sub 3} substrates by chemical solution deposition. The annealing process is optimized such that a stoichiometric precursor can be used to accurately control the Bi:Fe ratio. Ferroelectric, dielectric, and resistive switching behaviours are investigated for 40 nm, 70 nm, and 150 nm BFO thin films. While the thinnest film (40 nm) shows very leaky loops, square and fully saturated polarization hysteresis loops are shown for the thicker films. The highest remanent polarization (2P{sub r} = 100 μC/cm{sup 2}) and relative dielectric constant (ε{sub r} = 613) are obtained in the 150 nm BFO thin film. High cycle fatigue tests show that the thick films are resistant to polarization fatigue. Piezoresponse force microscopy results show that the domain structure varies with thickness. Resistive switching and polarization mediated diode effects are also observed. These robust properties suggest that chemical solution deposition derived BiFeO{sub 3} thin films can offer a viable low cost alternative.
Authors:
; ;  [1]
  1. School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia)
Publication Date:
OSTI Identifier:
22314640
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BISMUTH; DEPOSITION; DOMAIN STRUCTURE; EPITAXY; FATIGUE; FERRITES; FERROELECTRIC MATERIALS; MATHEMATICAL SOLUTIONS; PERMITTIVITY; POLARIZATION; PRECURSOR; STRONTIUM TITANATES; THIN FILMS