skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversing ferroelectric polarization in multiferroic DyMn{sub 2}O{sub 5} by nonmagnetic Al substitution of Mn

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4891979· OSTI ID:22314561
; ; ; ; ; ;  [1]
  1. Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

The multiferroic RMn{sub 2}O{sub 5} family, where R is rare-earth ion or Y, exhibits rich physics of multiferroicity which has not yet well understood. DyMn{sub 2}O{sub 5} is a representative member of this family. The ferroelectric polarization of DyMn{sub 2}O{sub 5} is claimed to be magnetically relevant and have more than one component. Therefore, the polarization reversal upon the sequent magnetic transitions is expected. We investigate the evolution of the ferroelectric polarization upon a partial substitution of Mn{sup 3+} by nonmagnetic Al{sup 3+} in order to tailor the Mn{sup 3+}-Mn{sup 4+} interactions and then to modulate the polarization in DyMn{sub 2−x/2}Al{sub x/2}O{sub 5}. It is revealed that the polarization can be successfully reversed by Al-substitution via substantially suppressing the Mn{sup 3+}-Mn{sup 4+} interactions, while the Dy{sup 3+}-Mn{sup 4+} interactions can sustain against the substitution until a level as high as x = 0.2. In addition, the independent Dy spin ordering is shifted remarkably down to an extremely low temperature due to the Al{sup 3+} substitution. The present work unveils the possibility of tailoring the Mn{sup 3+}-Mn{sup 4+} and Dy{sup 3+}-Mn{sup 4+} interactions independently, and thus reversing the ferroelectric polarization.

OSTI ID:
22314561
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English