skip to main content

SciTech ConnectSciTech Connect

Title: Low-temperature plasma-deposited silicon epitaxial films: Growth and properties

Low-temperature (≤200 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-enhanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only from the growth conditions but also from unintentional contamination of the reactor. Based on our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.
Authors:
; ; ; ; ;  [1] ; ;  [2]
  1. École Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Maladière 71B, CH-2000 Neuchâtel (Switzerland)
  2. École Polytechnique Fédérale de Lausanne (EPFL), Interdisciplinary Centre for Electron Microscopy (CIME), Station 12, CH-1015 Lausanne (Switzerland)
Publication Date:
OSTI Identifier:
22314544
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CHEMICAL VAPOR DEPOSITION; DESIGN; EPITAXY; EQUIPMENT; FILMS; INTERFACES; LAYERS; MEAN FREE PATH; PLASMA; SEMICONDUCTOR DEVICES; SILANES; SILICON; SUBSTRATES; TEMPERATURE RANGE 0273-0400 K; THICKNESS; VISIBLE RADIATION