skip to main content

SciTech ConnectSciTech Connect

Title: Carbon related donor bound exciton transitions in ZnO nanowires

Several shallow donor bound exciton photoluminescence (PL) transitions are reported in ZnO nanowires doped with carbon. The emission energies are in the range of 3360.8–3361.9 meV, close to previously reported emission lines due to excitons bound to donor point defects, such as Ga, Al, In, and H. The addition of small amounts of hydrogen during growth results in a strong enhancement of the PL of these carbon related emission lines, yet PL and annealing measurements indicate no appreciable bulk hydrogen. The observation of two electron satellites for these emission lines enables the determination of the donor binding energies. The dependence of exciton localization energy on donor binding energy departs somewhat from the usual linear relationship observed for group III donors, indicating a qualitatively different central cell potential, as one would expect for a complex. Emission lines due to excitons bound to ionized donors associated with these defects are also observed. The dependence of the PL emission intensities on temperature and growth conditions demonstrates that the lines are due to distinct complexes and not merely excited states of each other.
Authors:
; ; ; ;  [1]
  1. Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A1S6 (Canada)
Publication Date:
OSTI Identifier:
22314543
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANNEALING; BINDING ENERGY; CARBON; DOPED MATERIALS; EV RANGE; EXCITED STATES; EXCITONS; HYDROGEN; PHOTOLUMINESCENCE; POINT DEFECTS; QUANTUM WIRES; ZINC OXIDES