skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The action mechanism of TiO{sub 2}:NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} cathode buffer layer in highly efficient inverted organic solar cells

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4892472· OSTI ID:22314514
; ; ; ; ;  [1];  [2]
  1. State Key Laboratory on Integrated Optoelectronics, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)
  2. College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

We report the fabrication and characteristics of organic solar cells with 6.86% power conversion efficiency (PCE) by doping NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} into TiO{sub 2} cathode buffer layer. The dependence of devices performance on doping concentration of NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} is investigated. Results indicate that short-circuit current density (J{sub sc}) has an apparent improvement, leading to an enhancement of 22.7% in PCE for the optimized doping concentration of 0.05 mmol ml{sup −1} compared to the control devices. NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} nanoparticles (NPs) can play threefold roles, one is that the incident light in visible region can be scattered by NaYF{sub 4} NPs, the second is that solar irradiation in infrared region can be better utilized by Up-conversion effect of Yb{sup 3+} and Tm{sup 3+} ions, the third is that electron transport property in TiO{sub 2} thin film can be greatly improved.

OSTI ID:
22314514
Journal Information:
Applied Physics Letters, Vol. 105, Issue 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English