skip to main content

Title: Dissociative electron attachment studies on acetone

Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.
Authors:
; ; ; ; ;  [1]
  1. Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)
Publication Date:
OSTI Identifier:
22311331
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACETONE; ANGULAR DISTRIBUTION; ANIONS; CROSS SECTIONS; ELECTRON ATTACHMENT; ELECTRONS; KINETIC ENERGY; MOLECULAR ORBITAL METHOD; PEAKS; RESONANCE