skip to main content

Title: 3D imaging of semiconductor components by discrete laminography

X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.
Authors:
 [1] ; ;  [2]
  1. Centrum Wiskunde and Informatica, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands and iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)
  2. iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)
Publication Date:
OSTI Identifier:
22311262
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1601; Journal Issue: 1; Conference: International conference on stress induced phenomena and reliability in 3D microelectronics, Kyoto (Japan), 28-30 May 2012; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; POTENTIALS; QUALITY CONTROL; SEMICONDUCTOR MATERIALS; TOMOGRAPHY; X RADIATION