skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GaAsSb/GaAsN short-period superlattices as a capping layer for improved InAs quantum dot-based optoelectronics

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4891557· OSTI ID:22311217
; ;  [1]; ; ;  [2]
  1. Institute for Systems based on Optoelectronics and Microtechnology (ISOM) and Departamento de Ingeniería Electrónica, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)
  2. Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cádiz, 11510 Puerto Real (Cádiz) (Spain)

The application of a GaAsSb/GaAsN short-period superlattice capping layer (CL) on InAs/GaAs quantum dots (QDs) is shown to be an option for providing improved luminescence properties to this system. Separating both GaAsSb and GaAsN ternaries during the growth in 2 monolayer-thick phases solves the GaAsSbN immiscibility-related problems. Strong fluctuations in the CL composition and strain field as well as in the QD size distribution are significantly reduced, and a more regular CL interface is also obtained. Room-temperature (RT) photoluminescence (PL) is obtained for overall N contents as high as 3%, yielding PL peak wavelengths beyond 1.4 μm in samples with a type-II band alignment. High external quantum efficiency electroluminescence and photocurrent from the QD ground state are also demonstrated at RT in a single QD-layer p-i-n device. Thus, it becomes possible to combine and transfer the complementary benefits of Sb- and N-containing GaAs alloys to InAs QD-based optoelectronics.

OSTI ID:
22311217
Journal Information:
Applied Physics Letters, Vol. 105, Issue 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English