skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial electronic structure-modulated magnetic anisotropy in Ta/CoFeB/MgO/Ta multilayers

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4894765· OSTI ID:22311022
; ; ; ; ;  [1];  [2]
  1. SKLSM, Institute of Semiconductors, CAS, P. O. Box 912, Beijing 100083 (China)
  2. Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China)

We have observed several unexpected phenomena when a trace amount of Fe atoms is deposited onto the CoFeB/MgO interface in Ta/CoFeB/MgO/Ta multilayers. With the nominal thickness of the introduced Fe atoms (t{sub Fe}) varying from 0 to 0.1 Å, the effective magnetic anisotropy energy (K{sub eff}) of annealed multilayers is remarkably enhanced from 1.28 × 10{sup 6 }erg/cm{sup 3} to 2.14 × 10{sup 6 }erg/cm{sup 3}. As t{sub Fe} further increasing, the K{sub eff} decreases and even becomes negative when t{sub Fe} > 1 Å, indicating the change from perpendicular magnetic anisotropy to in-plane magnetic anisotropy. The analysis by X-ray photoelectron spectrometer reveals that the Fe atoms at annealed CoFeB/MgO interface show different electronic structures as t{sub Fe} increasing, which combine with O atoms to form FeO{sub x} (x < 1), Fe{sub 2}O{sub 3}, and Fe{sub 3}O{sub 4}, respectively, leading to modulation of Fe 3d-O 2p orbital hybridization and thus the K{sub eff}. On the other hand, we find that the introduction of Fe atoms also helps to reduce the multilayers' magnetic damping.

OSTI ID:
22311022
Journal Information:
Applied Physics Letters, Vol. 105, Issue 9; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English