skip to main content

SciTech ConnectSciTech Connect

Title: High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition

A technique based on composite quantum wells for design and growth of strain balanced Al{sub 0.63}In{sub 0.37}As/Ga{sub 0.35}In{sub 0.65}As/Ga{sub 0.47}In{sub 0.53}As quantum cascade lasers (QCLs) by molecular beam epitaxy (MBE), emitting in 5.2–11 μm wavelength range, is reported. The strained Al{sub 0.63}In{sub 0.37}As provides good electron confinement at all wavelengths, and strain balancing can be achieved through composite wells of Ga{sub 0.35}In{sub 0.65}As/Ga{sub 0.47}In{sub 0.53}As for different wavelength. The use of these fixed composition materials can avoid the need for frequent calibration of a MBE reactor to grow active regions with different strain levels for different wavelengths. Experimental results for QCLs emitting at 5.2, 6.7, 8.2, 9.1, and 11 μm exhibit good wall plug efficiencies and power across the whole wavelength range. It is shown that the emission wavelength can be predictably changed using the same design template. These lasers are also compatible with a heterogeneous broadband active region, consisting of multiple QCL cores, which can be produced in a single growth run.
Authors:
; ; ;  [1]
  1. Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)
Publication Date:
OSTI Identifier:
22310862
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 7; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM COMPOUNDS; ARSENIC COMPOUNDS; BALANCES; CALIBRATION; COMPOSITE MATERIALS; CONFINEMENT; CRYSTAL GROWTH; EFFICIENCY; ELECTRONS; EMISSION; GALLIUM COMPOUNDS; INDIUM COMPOUNDS; LASER RADIATION; MOLECULAR BEAM EPITAXY; QUANTUM WELLS; STRAINS; WAVELENGTHS