skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carrier transfer from InAs quantum dots to ErAs metal nanoparticles

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4895519· OSTI ID:22310848

Erbium arsenide (ErAs) is a semi-metallic material that self-assembles into nanoparticles when grown in GaAs via molecular beam epitaxy. We use steady-state and time-resolved photoluminescence to examine the mechanism of carrier transfer between indium arsenide (InAs) quantum dots and ErAs nanoparticles in a GaAs host. We probe the electronic structure of the ErAs metal nanoparticles (MNPs) and the optoelectronic properties of the nanocomposite and show that the carrier transfer rates are independent of pump intensity. This result suggests that the ErAs MNPs have a continuous density of states and effectively act as traps. The absence of a temperature dependence tells us that carrier transfer from the InAs quantum dots to ErAs MNPs is not phonon assisted. We show that the measured photoluminescence decay rates are consistent with a carrier tunneling model.

OSTI ID:
22310848
Journal Information:
Applied Physics Letters, Vol. 105, Issue 10; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English