skip to main content

SciTech ConnectSciTech Connect

Title: Core-to-valence spectroscopic detection of the CH{sub 2}Br radical and element-specific femtosecond photodissociation dynamics of CH{sub 2}IBr

Element-specific single photon photodissociation dynamics of CH{sub 2}IBr and core-to-valence absorption spectroscopy of CH{sub 2}Br radicals are investigated using femtosecond high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy. Photodissociation of CH{sub 2}IBr along both the C–I or C–Br reaction coordinates is observed in real-time following excitation at 266 nm. At this wavelength, C–I dissociation is the dominant reaction channel and C–Br dissociation is observed as a minor pathway. Both photodissociation pathways are probed simultaneously through individual 4d(I) N{sub 4/5} and 3d(Br) M{sub 4/5} core-to-valence transitions. The 3d(Br) M{sub 4/5} pre-edge absorption spectrum of the CH{sub 2}Br radical photoproduct corresponding to the C–I dissociation channel is characterized for the first time. Although the radical's singly occupied molecular orbital (SOMO) is mostly localized on the central carbon atom, the 3d(Br) → π{sup *}(SOMO) resonances at 68.5 eV and 69.5 eV are detected 2 eV below the parent molecule 3d(Br) → σ{sup *}(LUMO) transitions. Core-to-valence XUV absorption spectroscopy provides a unique probe of the local electronic structure of the radical species in reference to the Br reporter atom. The measured times for C–I dissociation leading to I and I{sup *} atomic products are 48 ± 12 fs and 44 ± 4 fs, respectively, whilemore » the measured C–Br dissociation time leading to atomic Br is 114 ± 17 fs. The investigation performed here demonstrates the capability of femtosecond time-resolved core-level spectroscopy utilizing multiple reporter atoms simultaneously.« less
Authors:
;  [1] ;  [2] ;  [1] ;  [2] ;  [2]
  1. Department of Chemistry, University of California, Berkeley, California 94720 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
22310750
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION SPECTRA; ABSORPTION SPECTROSCOPY; ATOMS; DETECTION; DISSOCIATION; ELECTRONIC STRUCTURE; EXCITATION; EXTREME ULTRAVIOLET RADIATION; MOLECULAR ORBITAL METHOD; MOLECULES; PHOTOLYSIS; RADICALS; RESONANCE; TIME RESOLUTION