skip to main content

Title: A multi-scale analysis of the impact of pressure on melting of crystalline phase change material germanium telluride

The impact of the moderate pressure (about 10{sup 0 }GPa) on the melting of crystalline (c-) phase change material (PCM) germanium telluride (GeTe) is analyzed, by combining the heat transfer equation in the PCM device scale (10{sup 1}–10{sup 2 }nm and beyond), and the ab initio molecular dynamics and the nudged elastic band simulations in the atomistic scale (10{sup −1}–10{sup 0 }nm). The multi-scale analysis unravels that a pressure P = 1.0 GPa can increase the melting temperature of c-GeTe and the PCM device “reset” operation energy consumption by 6%–7%. It is shown that the melting temperature increase originates from the pressure-induced raise of the energy barrier of the umbrella-flip transition of the Ge atom from the octahedral symmetry site to the tetrahedral symmetry site. It is revealed that when P > 1.0 GPa, which is normal in PCM devices, the “reset” energy will be increased even by more. Based on the analysis, suggestions to alleviate pressure-induced raise of melting temperature and “reset” energy are provided.
Authors:
 [1]
  1. Department of Electrical Engineering, University of Washington, 185 Stevens Way, Paul Allen Center, Seattle, Washington 98195 (United States)
Publication Date:
OSTI Identifier:
22310684
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 17; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMS; CRYSTAL STRUCTURE; ENERGY CONSUMPTION; EQUATIONS; EQUIPMENT; GERMANIUM; GERMANIUM TELLURIDES; HEAT TRANSFER; MELTING; MELTING POINTS; MOLECULAR DYNAMICS METHOD; PHASE CHANGE MATERIALS; PRESSURE RANGE GIGA PA; SIMULATION; SYMMETRY