skip to main content

Title: Efficient and accurate laser shaping with liquid crystal spatial light modulators

A phase-only spatial light modulator (SLM) is capable of precise transverse laser shaping by either functioning as a variable phase grating or by serving as a variable mask via polarization rotation. As a phase grating, the highest accuracy algorithms, based on computer generated holograms (CGHs), have been shown to yield extended laser shapes with <10% rms error, but conversely little is known about the experimental efficiency of the method in general. In this work, we compare the experimental tradeoff between error and efficiency for both the best known CGH method and polarization rotation-based intensity masking when generating hard-edged flat top beams. We find that the masking method performs comparably with CGHs, both having rms error < 10% with efficiency > 15%. Informed by best practices for high efficiency from a SLM phase grating, we introduce an adaptive refractive algorithm which has high efficiency (92%) but also higher error (16%), for nearly cylindrically symmetric cases.
Authors:
; ;  [1]
  1. Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)
Publication Date:
OSTI Identifier:
22310643
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 17; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BEAMS; CYLINDRICAL CONFIGURATION; EFFICIENCY; HOLOGRAPHY; LASER RADIATION; LIQUID CRYSTALS; MODULATION; POLARIZATION; RESPIRATORS; ROTATION; SCANNING LIGHT MICROSCOPY; SYMMETRY; VISIBLE RADIATION