skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Doping dependence of correlation effects in K{sub 1−x}Fe{sub 2−y}Se{sub 2} superconductors: LDA’ + DMFT investigation

Journal Article · · Journal of Experimental and Theoretical Physics
;  [1]
  1. Russian Academy of Sciences, Institute for Electrophysics, Ural Branch (Russian Federation)

We present a detailed LDA’ + DMFT investigation of the doping dependence of correlation effects in the novel K{sub 1−x}Fe{sub 2−y}Se{sub 2} superconductor. Calculations are performed at four different hole doping levels, starting from a hypothetical stoichiometric composition with the total number of electrons equal to 29 per unit cell through 28 and 27.2 electrons toward the case of 26.52, which corresponds to the chemical composition K{sub 0.76}Fe{sub 1.72}Se{sub 2} studied in recent ARPES experiments. In the general case, the increase in hole doping leads to quasiparticle bands in a wide energy window ±2 eV around the Fermi level becoming more broadened by lifetime effects, while correlation-induced compression of Fe-3d LDA’ bandwidths stays almost the same, of the order of 1.3 for all hole concentrations. However, close to the Fermi level, the situation is more complicated. In the energy interval from −1.0 eV to 0.4 eV, the bare Fe-3d LDA’ bands are compressed by significantly larger renormalization factors up to 5 with increased hole doping, while the value of Coulomb interaction remains the same. This fact manifests the increase in correlation effects with hole doping in the K{sub 1−x}Fe{sub 2−y}Se{sub 2} system. Moreover, in contrast to typical pnictides, K{sub 1−x}Fe{sub 2−y}Se{sub 2} does not have well-defined quasiparticle bands on the Fermi levels, but has a “pseudogap”-like dark region instead. We also find that with the growth of hole doping, Fe-3d orbitals of various symmetries are affected by correlations differently in different parts of the Brillouin zone. To illustrate this, we determine the quasiparticle mass renormalization factors and energy shifts that transform the bare Fe-3d LDA’ bands of various symmetries into LDA’ + DMFT quasiparticle bands. These renormalization factors effectively mimic more complicated energy-dependent self-energy effects and can be used to analyze the available ARPES data.

OSTI ID:
22309118
Journal Information:
Journal of Experimental and Theoretical Physics, Vol. 117, Issue 5; Other Information: Copyright (c) 2013 Pleiades Publishing, Inc.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7761
Country of Publication:
United States
Language:
English