skip to main content

SciTech ConnectSciTech Connect

Title: Flow of colloid particle solution past macroscopic bodies and drag crisis

The motion of colloid particles in a viscous fluid flow is considered. Small sizes of colloid particles as compared to the characteristic scale of the flow make it possible to calculate their velocity relative to the liquid. If the density of a colloid particle is higher than the density of the liquid, the flow splits into regions in which the velocity of colloid particles coincides with the velocity of the liquid and regions of flow stagnation in which the colloid velocity is higher than the velocity of the fluid. This effect is used to explain qualitatively the decrease in the drag to the flows past macroscopic bodies and flows in pipes.
Authors:
 [1]
  1. Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)
Publication Date:
OSTI Identifier:
22309113
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 117; Journal Issue: 5; Other Information: Copyright (c) 2013 Pleiades Publishing, Inc.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COLLOIDS; FLUID FLOW; FLUID MECHANICS; LIQUIDS; MATHEMATICAL SOLUTIONS; PIPES