skip to main content

Title: Self-similar turbulent boundary layer with imposed pressure gradient. Four flow regimes

Self-similar flows of an incompressible fluid in a turbulent boundary layer, when the free-stream velocity is a power function (with the exponent m) of the longitudinal coordinate, have been studied. It has been shown that there are four different self-similar flow regimes corresponding to four individual similarity parameters one of which is the known Clauser parameter and the three other parameters have been established for the first time. At adverse pressure gradient, when the exponent m lies in a certain range depending on Reynolds number, the problem has two solutions with different values of the boundary-layer thickness and skin friction; consequently, hysteresis in a pre-separation flow is possible. Separation occurs not at the minimal value of m that corresponds to the strongest adverse pressure gradient, but at m = −0.216 −0.4 Re{sub p}{sup −1/3} + O(Re{sub p}{sup −2/3}), where Re{sub p} is the Reynolds number based on longitudinal pressure gradient. The theoretical results are in good agreement with experimental data.
Authors:
 [1]
  1. Moscow State University, Institute of Mechanics (Russian Federation)
Publication Date:
OSTI Identifier:
22309096
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 119; Journal Issue: 5; Other Information: Copyright (c) 2014 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOUNDARY LAYERS; EXPERIMENTAL DATA; FLUID MECHANICS; PRESSURE GRADIENTS; REYNOLDS NUMBER; TURBULENT FLOW