skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermoelectric misfit-layered cobalt oxides with interlayers of hydroxide and peroxide species

Journal Article · · Journal of Solid State Chemistry
;  [1];  [2];  [3]; ; ;  [1];  [1]
  1. Laboratory of Inorganic Chemistry, Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)
  2. National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)
  3. Program for Science and Technology of Accelerator Light Source, National Chiao Tung University, Hsinchu 30076, Taiwan (China)

Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent m=0 phases exhibit divergent chemical features but are less understood than the more common m>0 members of the series. Here we synthesize Sr-for-Ca substituted [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} zero phases up to x=0.2 through low-temperature hydrothermal conversion of precursor powders of the m=1 misfit system, [Co(Ca{sub 1−x}Sr{sub x}){sub 2}O{sub 3}]{sub q}CoO{sub 2}. In the zero-phase [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} system, as the Sr content x increases the lattice expands anisotropically along the c axis such that the ab-plane dimension and the misfit parameter q remain essentially constant. X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with infrared spectroscopy, thermogravimetric and low-temperature resistivity and thermopower measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} block but leaves the valence of Co essentially intact in the CoO{sub 2} block. The higher electrical conductivity of the Sr-substituted phases is explained as a consequence of increased carrier mobility. - Graphical abstract: Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent zero (m=0) phases exhibit divergent chemical features. For [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2}, X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with thermogravimetric and low-temperature transport-property measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} block but leaves the valence of Co essentially intact in the CoO{sub 2} block. - Highlights: • Parent m=0 [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2} misfit-layer oxides exhibit divergent chemical features. • [(Ca,Sr){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} is found to contain both peroxide and hydroxide species. • Hydrothermal synthesis yields [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} samples up to x=0.2. • With increasing x, the c axis expands but the misfit parameter q remains constant. • Co valence remains intact, but peroxide and hydroxide contents may be affected.

OSTI ID:
22309074
Journal Information:
Journal of Solid State Chemistry, Vol. 208; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English