skip to main content

SciTech ConnectSciTech Connect

Title: New orthorhombic derivative of CaCu{sub 5}-type structure: RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho), crystal structure and some magnetic properties

The crystal structure of new YNi{sub 4}Si-type RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds has been established using powder X-ray diffraction. The YNi{sub 4}Si structure is a new structure type, which is orthorhombic derivative of CaCu{sub 5}-type structure (space group Cmmm N 65, oC12). GdNi{sub 4}Si and DyNi{sub 4}Si compounds order ferromagnetically at 25 and 19 K, respectively whereas YNi{sub 4}Si shows antiferromagnetic nature. At 15 K, DyNi{sub 4}Si shows second antiferromagnetic-like transition. The magnetic moment of GdNi{sub 4}Si at 5 K in 50 kOe field is ∼7.2 μ{sub B}/f.u. suggesting a completely ordered ferromagnetic state. The magnetocaloric effect of GdNi{sub 4}Si is calculated in terms of isothermal magnetic entropy change and it reaches the maximum value of −12.8 J/kg K for a field change of 50 kOe near T{sub C} ∼25 K. - Graphical abstract: The RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds crystallize in new YNi{sub 4}Si-type structure which is orthorhombic derivative of the basic CaCu{sub 5}-type structure. GdNi{sub 4}Si and DyNi{sub 4}Si compounds show the ferromagnetic-like ordering, whereas.YNi{sub 4}Si has the antiferromagnetic nature. The GdNi{sub 4}Si demonstrates the big magnetocaloric effect near temperature of ferromagnetic ordering. The relationship between initial CaCu{sub 5}-type DyNi{sub 5} andmore » YNi{sub 4}Si-type DyNi{sub 4}Si lattices.« less
Authors:
 [1] ;  [1] ;  [2] ; ;  [3] ;  [4]
  1. Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation)
  2. Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation)
  3. Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada)
  4. Indian Institute of Technology Madras, Chennai 600036 (India)
Publication Date:
OSTI Identifier:
22309059
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 208; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; ENTROPY; MAGNETIC MOMENTS; MAGNETIC PROPERTIES; ORTHORHOMBIC LATTICES; SPACE GROUPS; X-RAY DIFFRACTION