skip to main content

Title: Optical system for liquid level measurements

This work describes the development of a novel laser instrument for non-contact liquid level measurements. The physical principle of operation is based on the self-mixing effect induced in the laser diode by modulating the laser wavelength. The frequency main tone of the resulting fringes is proportional to the absolute target distance. A high speed FPGA (Field Programmable Gate Array) electronic performs the data acquisition and elaboration. The high elaboration/acquisition speed improves the chance of acquiring good signal also on a moving liquid target. The optical characteristics of the liquid surface have been studied in order to identify the optimal optical configuration when the surface is flat as well as when the surface is rippled. The final low-cost instrument works in real time and is able to track a filling process with 2.5 cm/s of speed, with resolution better than 1 mm for distances up to 50 cm.
Authors:
;  [1]
  1. Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy)
Publication Date:
OSTI Identifier:
22308962
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 7; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; DATA ACQUISITION; DISTANCE; LASERS; LEVEL INDICATORS; LIQUIDS; OPTICAL SYSTEMS; RESOLUTION; SIGNALS; SURFACES; WAVELENGTHS