skip to main content

Title: Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons

We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011);S. Chen et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 μm, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations.
Authors:
;  [1] ;  [2] ;  [3]
  1. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
  2. Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
  3. Department of Electrical and Computer Engineering, University of Massachusetts-Amherst, Amherst, Massachusetts 01003 (United States)
Publication Date:
OSTI Identifier:
22308888
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ACCOUNTING; BOLTZMANN EQUATION; CAPTURE; COMPUTERIZED SIMULATION; GRAIN BOUNDARIES; GRAPHENE; ISOTOPES; MONTE CARLO METHOD; NANOSTRUCTURES; PHONONS; SCATTERING; STOCHASTIC PROCESSES; TEMPERATURE RANGE 0273-0400 K; THERMAL CONDUCTIVITY