skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4898444· OSTI ID:22308885
 [1];  [2]
  1. Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak, Malaysia and School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia)
  2. Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak (Malaysia)

Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

OSTI ID:
22308885
Journal Information:
AIP Conference Proceedings, Vol. 1621, Issue 1; Conference: ICSAS 2014: 3. international conference on fundamental and applied sciences: Innovative research in applied sciences for a sustainable future, Kuala Lumpur (Malaysia), 3-5 Jun 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English