skip to main content

Title: Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet

We present the designs of probes for making critical current density (J{sub c}) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ∼0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J{sub c} measurements, made by uniformly ramping the current up to a maximum current (I{sub max}) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b{sup ′}), and the maximum safe temperature for the critical-current leads (T{sub max}). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI{sub max}/A=[1.46D{sup −0.18}L{supmore » 0.4}(T{sub max}−300){sup 0.25D{sup −{sup 0{sup .{sup 0{sup 9}}}}}}+750(b{sup ′}/I{sub max})D{sup 10{sup −{sup 3I{sub m}{sub a}{sub x}−2.87b{sup ′}}}}]× 10{sup 6}A m{sup −1} where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm{sup 2} is obtained when I{sub max} = 1000 A, T{sub max} = 400 K, D = 0.2, b{sup ′} = 0.3 l h{sup −1} and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h{sup −1}. When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I{sub max } ≈ (1.35 × 10{sup −3})D{sup 0.41} l h{sup ‑1} A{sup −1}. A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of ±80 mK to ±150 mK. Uniaxial strains of −1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than ±0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder.« less
Authors:
; ;  [1]
  1. Superconductivity Group, Centre for Materials Physics, Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)
Publication Date:
OSTI Identifier:
22308816
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 43 PARTICLE ACCELERATORS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; BEAM BENDING MAGNETS; BERYLLIUM; BRASS; CRITICAL CURRENT; CURRENT DENSITY; DEWARS; HELIUM; MAGNETIC FIELDS; PROBES; ROTATION; SAMPLE HOLDERS; STRAINS; SUPERCONDUCTING MAGNETS; TEMPERATURE DEPENDENCE; TEMPERATURE RANGE 0400-1000 K