skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: The role of the potential

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4886421· OSTI ID:22308777
 [1]
  1. Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA and Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095 (United States)

We study a calcium aluminosilicate glass of composition (SiO{sub 2}){sub 0.60}(Al{sub 2}O{sub 3}){sub 0.10}(CaO){sub 0.30} by means of molecular dynamics. To this end, we conduct parallel simulations, following a consistent methodology, but using three different potentials. Structural and elastic properties are analyzed and compared to available experimental data. This allows assessing the respective abilities of the potentials to produce a realistic glass. We report that, although all these potentials offer a reasonable glass structure, featuring tricluster oxygen atoms, their respective vibrational and elastic predictions differ. This allows us to draw some general conclusions about the crucial role, or otherwise, of the interaction potential in silicate systems.

OSTI ID:
22308777
Journal Information:
Journal of Chemical Physics, Vol. 141, Issue 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English