skip to main content

Title: Electron transport in nanoscale junctions with local anharmonic modes

We study electron transport in nanojunctions in which an electron on a quantum dot or a molecule is interacting with an N-state local impurity, a harmonic (“Holstein”) mode, or a two-state system (“spin”). These two models, the Anderson-Holstein model and the spin-fermion model, can be conveniently transformed by a shift transformation into a form suitable for a perturbative expansion in the tunneling matrix element. We explore the current-voltage characteristics of the two models in the limit of high temperature and weak electron-metal coupling using a kinetic rate equation formalism, considering both the case of an equilibrated impurity, and the unequilibrated case. Specifically, we show that the analog of the Franck-Condon blockade physics is missing in the spin-fermion model. We complement this study by considering the low-temperature quantum adiabatic limit of the dissipative spin-fermion model, with fast tunneling electrons and a slow impurity. While a mean-field analysis of the Anderson-Holstein model suggests that nonlinear functionalities, bistability and hysteresis may develop, such effects are missing in the spin-fermion model at the mean-field level.
Authors:
;  [1]
  1. Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St. Toronto, Ontario M5S 3H6 (Canada)
Publication Date:
OSTI Identifier:
22308758
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ELECTRIC POTENTIAL; ELECTRONS; HYSTERESIS; MATRIX ELEMENTS; MOLECULES; QUANTUM DOTS; REACTION KINETICS; SPIN; TUNNEL EFFECT