skip to main content

SciTech ConnectSciTech Connect

Title: Analyzing the errors of DFT approximations for compressed water systems

We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm{sup 3} where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We findmore » that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE{sub h} ≃ 15 meV/monomer for the liquid and the clusters.« less
Authors:
 [1] ;  [2] ;  [2] ;  [2] ; ;  [3] ;  [4] ;  [2] ;  [2]
  1. Department of Earth Sciences, UCL, London WC1E 6BT (United Kingdom)
  2. (United Kingdom)
  3. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)
  4. London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom)
Publication Date:
OSTI Identifier:
22308740
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; APPROXIMATIONS; CORRECTIONS; DENSITY; DENSITY FUNCTIONAL METHOD; ERRORS; LIQUIDS; MOLECULAR DYNAMICS METHOD; MONTE CARLO METHOD; NEUTRON DIFFRACTION; SIMULATION; WATER