skip to main content

Title: Inhibition of light emission in a 2.5D photonic structure

We analyse inhibition of emission in a 2.5D photonic structures made up of a photonic crystal (PhC) and Bragg mirrors using Finite Differences Time Domaine (FDTD) simulations. A comparison is made between an isolated PhC membrane and the same PhC suspended onto a Bragg mirror or sandwiched between 2 Bragg mirrors. Strong inhibition of the Purcell factor is observed in a broad spectral range, whatever the in-plane orientation and location of the emitting dipole. We analysed these results numerically and theoretically by simulating the experimentally observed lifetime of a collection of randomly distributed emitters, showing that their average emission rate is decreased by more than one decade, both for coupled or isolated emitters.
Authors:
; ; ;  [1]
  1. Institut des Nanotechnologies de Lyon (INL), Université de Lyon, UMR 5270, CNRS-INSA-ECL-UCBL Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France)
Publication Date:
OSTI Identifier:
22308710
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BRAGG REFLECTION; CRYSTALS; DIPOLES; EMISSION; INHIBITION; LIFETIME; MEMBRANES; MIRRORS; ORIENTATION; RANDOMNESS; VISIBLE RADIATION