skip to main content

SciTech ConnectSciTech Connect

Title: An analytical model to predict curvature effects of the carbon nanotube on the overall behavior of nanocomposites

In this study, analytical expressions are introduced to provide a better understanding of carbon nanotubes (CNTs) curvature on the overall behavior of nanocomposites. The curviness of CNT is modeled as the wave geometries, and the transformed physical characteristics are applied to micromechanical framework. Since five independent elastic constants of CNTs are essential to derive the waviness effect, atomistic molecular statics simulations with varying nanotube radii are conducted. Influences of CNT curviness on the effective stiffness of the nanocomposites are analyzed, noting that the curvature effect is significantly influential on the effective stiffness of the nanocomposites, and it may improve or reduce the reinforcing effect depending on the orientation of CNTs. In addition, the predictions are compared with experimental data of the CNT-reinforced nanocomposites to assess the reliability of the proposed method. The developed constitutive model is expected to be used to determine the volume concentration of the reinforcing CNTs and mechanical responses of CNT-reinforced composites under various CNT curvature, radius, and orientation conditions.
Authors:
; ;  [1] ; ;  [2]
  1. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)
  2. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22308464
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON NANOTUBES; COMPOSITE MATERIALS; FLEXIBILITY; FORECASTING; NANOCOMPOSITES; ORIENTATION; REINFORCED MATERIALS; RELIABILITY; SIMULATION