skip to main content

Title: Revisiting the photodissociation dynamics of the phenyl radical

We have reinvestigated the photodissociation dynamics of the phenyl radical at 248 nm and 193 nm via photofragment translational spectroscopy under a variety of experimental conditions aimed at reducing the nascent internal energy of the phenyl radical and eliminating signal from contaminants. Under these optimized conditions, slower translational energy (P(E{sub T})) distributions for H-atom loss were seen at both wavelengths than in previously reported work. At 193 nm, the branching ratio for C{sub 2}H{sub 2} loss vs. H-atom loss was found to be 0.2 ± 0.1, a significantly lower value than was obtained previously in our laboratory. The new branching ratio agrees with calculated Rice-Ramsperger-Kassel-Marcus rate constants, suggesting that the photodissociation of the phenyl radical at 193 nm can be treated using statistical models. The effects of experimental conditions on the P(E{sub T}) distributions and product branching ratios are discussed.
Authors:
; ; ;  [1]
  1. Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
Publication Date:
OSTI Identifier:
22308370
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 10; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ATOMS; DISSOCIATION; PHENYL RADICALS; PHOTOLYSIS; REACTION KINETICS; SIGNALS; SPECTROSCOPY; STATISTICAL MODELS; WAVELENGTHS