skip to main content

SciTech ConnectSciTech Connect

Title: A study on leakage radiation dose at ELV-4 electron accelerator bunker

Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker’s door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5μSv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.
Authors:
;  [1] ;  [2]
  1. School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (Malaysia)
  2. Department of Electronic and Communication, College of Engineering, Universiti Tenaga Nasional (Malaysia)
Publication Date:
OSTI Identifier:
22308333
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1614; Journal Issue: 1; Conference: 2014 UKM FST postgraduate colloquium, Selangor (Malaysia), 9-11 Apr 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCELERATORS; COMPUTER CODES; DOORS; ELECTRONS; HOPPERS; RADIATION DOSES; TWO-DIMENSIONAL CALCULATIONS