skip to main content

SciTech ConnectSciTech Connect

Title: Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface

We investigated the influence of compressive surface strain on the progression of oxygen reduction reaction (ORR) on Pt(111) surface using the density functional theory (DFT) calculation method. Specifically, we calculated the binding energies of all the chemical species possibly involved in ORR and the reaction energies (heat of reaction and activation energy) of all the possible ORR elementary reactions on the Pt(111) surfaces with −2% and −3% strain. Our DFT results indicate that all the ORR species bind more weakly on the compressively strained surfaces than on an unstrained surface owing to strain-induced d-electron band broadening. Our DFT calculations further predict that both OOH dissociation and HOOH dissociation pathways could be active for ORR on the Pt(111) surface with compressive strain between −2% and −3%. Moreover, the activation energies of the ORR rate-determining steps on the compressively strained Pt(111) surfaces were found to be lower than that on the unstrained Pt(111) surface. It was thus inferred that a −2% to −3% surface strain could lead to enhanced ORR activity on the Pt(111) catalysts. Consequently, our study suggests that tuning surface strain is an effective way to improve the performance of Pt-based electrocatalysts for ORR.
Authors:
;  [1]
  1. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)
Publication Date:
OSTI Identifier:
22308247
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACTIVATION ENERGY; BINDING ENERGY; DENSITY FUNCTIONAL METHOD; DISSOCIATION; ELECTROCATALYSTS; ELECTRONS; OXYGEN; REACTION HEAT; STRAINS; SURFACES